KLINISCHE WOCHENSCHRIFT

17. JAHRGANG Nr. 27 2. JULI 1938

ORIGINALIEN.

BAKTERIEN UND VIRUS IN ÜBERMIKROSKOPISCHER AUFNAHME
(mit einer Einführung in die Technik des Übermikroskops).

Von
B. VON BORRIES, E. RUSKA und H. RUSKA.

* Aus dem Laboratorium für Elektronenoptik des Wernerwerks F. Siemens & Halske Aktiengesellschaft und der I. Medizinischen Universitätsklinik der Charité.

Ziel der Arbeit.

Durch das Übermikroskop können solche Krankheitserreger sichtbar gemacht werden, die bisher ohne Anwendung von Färbeverfahren wegen ihrer Kleinheit im Lichtmikroskop verstreicht sind. Abb. 1 stellt das Bild einer Massenauflage dar, die nach 0,5 Stunden Belichtung in der Versuchsreihe mit dem Übermikroskop erhalten wurde.

** Der durch den Übermikroskop hervorgerufene Eindruck der Exakteauflage wächst mit dem Farbton der durch beleuchteten Teilchen.

Die magnetischen Linien haben keine feste Breite. Durch Änderung des Spulenstroms kann die Stärke des Magnetfeldes und damit die Breite der Linien geändert werden. Das elektronenoptische Bild wird mit der Änderung der Breite der Linien nicht nur schärfer oder unscharfer, sondern dreht sich dabei auch entsprechend der beschriebenen spiralen Strahlablenkung in sich, d.h. um die optische Achse.

Abb. 1. Übermikroskopisches Bild des Virus der Elektronenoptik.
Abb. 2. Magnetische Elektronenlinse zur Breitebreite mit einseitigem Spaltverkleinerung.

Die in dieser Arbeit gezeigten Objekte befinden sich auf 20 µm dicken Kollodiumfolien und werden bei „durchfallendem Licht“ betrachtet. Die Schärzfunktionen sind in der Abbildung kommen im wesentlichen dadurch zustande, daß die Elektronenstrahlen, welche nahezu parallel auf das Objekt fallen, je nach der Massendicke (Diode mal durchschnittliche Diode) des Objekts verschieden stark zerstreut werden, und zwar um so stärker, je größer die Massendicke ist. Die in einen größeren Winkel hinbreitgestreuten Strahlen werden nun von der nur sehr kleinen Öffnung des Objektives nicht mehr vollständig durchgelassen (s. Abb. 2). Die Objektive.

Aufnahmen von Bacillen und Virus.

Mit dem neuen Versuchsgerät konnten wir zahlreiche Bakterien bei bis 20000facher Vergrößerung aufnehmen.

Lichtoptische Vergleichsaufnahmen zeugen an organischem

Bisher konnten im Bakterienleib Differenzierungen auf Grund eines verschiedenartigen farblichen Verhaltens einzelner Teile vorgenommen werden. Es wurde versucht, Protoplasma und Kern oder Kernäquivalente zu unterscheiden, Ektomplasma und Ektoplasma, Vakuolen und Eiweißbildungen bei einzelnen Bakterien erkennen. Unsere Untersuchungen haben gezeigt, daß derartige Differenzierungen noch sehr viel weiterverbreitet sind, als das bisher angenommen werden konnte. Wir möchten jedoch die Be- griffe, die aus dem mikrochemischen Verhalten gewonnen worden sind, noch nicht auf jene Gebilde anwenden, die sich nach der verschiedenen Massenverteilung erkennen lassen.

* Die infektiöse Ektromelie der Maus ist eine Erkranzung, die sich bei planarier Keuschung der Versuchstiere in einer Schwellung und manchmal auch nachfolgender Glieder- und Ablösung einiger Glieder zeigt. Ein großer Teil der Tiere erliegt der Infektion. Für die Überlassung eines Ektromelienstammes des Institutes für Schiffs- und Tropenkrankheiten in Hamburg sind wir Herrn Prof. RABEC zu großem Dank verdankt.

** Das Kaninchennyxen ist eine durch ein Virus hervorgerufene Geschwulstkran- kheit mit neunfdurchschnittlichen Ausgangs, her Prof. HAAGEN (Institut Robert Koch, Berlin) war so liebenswürdig, uns Material aus einer Ektromelie überzulassen. Er hat außerdem die histopathische Kontrolle der nach HERZ- BERG gefährten Präparate und die Prüfung in Tierversuche übernommen, wofür ihm hier unser besonderer Dank ausgesprochen sei.
das Vakuum oder die Elektronenstrahlen zustande kämen. Insbesondere liegt ein solcher Einwand nahe, wenn bislang nicht bekannte Hüllen oder Kapseln an den Bakterien erscheinen. Selbst wenn dies der Fall sein sollte, so vermittelt es doch einen Einblick in den Bau des Bacteriums und eine neue Möglichkeit der Differenzierung, denn nicht alle Bakterien zeigen solche Erscheinungen.

DER EISEN-KUPFERANTAGONISMUS IM BLUT-PLASMA BEIM INFektIONSGESCHEHEN.

Von

LUDWIG HEILMEYER und GÜNTHER STÜWE.

Aus der Medizinischen Universitätsklinik Jena
(Ersteor: Prof. Dr. W. V. E. Ulz.)

Bei ihren Serumseienstoden haben HEILMEYER und PÖTNER erstmals auf die Erscheinung hingewiesen, welche die Bedeutung des im Organismus verfügbaren, beweglichen und leicht in ionisierbare Form überzuführenden Eisens für die Vorgänge beim Infektionsgeschehen in ein helles Licht rückt. Tritt bei einem gesunden Menschen ein plötzlicher Infekt ein, so stürzt der sonst beim Gesunden sehr konstante Plasmaeisenpiegel bereits in den ersten Tagen steil ab und bleibt so lange niedrig, bis der Infekt überwunden ist. Der selbe Vorgang läßt sich experimentell im Perfusionsversuch feststellen. In wenigen Stunden kommt es dabei zu einem Absturz des Serumseisens, das erst nach einigen Tagen wieder seine Ausgangskonzentration erreicht.

Diese Beobachtungen waren für den einen von uns (HEILMEYER) der Anlaß, die Bedeutung eines anderen Schwermetalls, des in verhältnismäßig großer Menge im Blutplasma vorkommenden und dessen physiologische und pathophysiologische Bedeutung bisher noch sehr im Dunklen lag, im Zusammenhang mit dem Infektionsgeschehen näher zu untersuchen, nämlich des Kupfers. Nach Überwindung einiger Schwierigkeiten gelang es uns, die Methodik von McFARLANE, bei welcher das Kupfer in Form des gelb gefärbten Dithyridithycarbamats bestimmt wird, mit Hilfe spektrophotometrischer Technik unter Verwendung des Zwillings-Substitutionsspektrometers so zu verbessern, daß wir absolut exakte Werte erreichten. Die genaue Mitteilung der Methodik erfolgt in einer demnächst erscheinenden ausführlichen Arbeit. Da die Werte nach Veraschung vollkommen mit den durch Einweisung mit Trichloressigsäure erhaltenen übereinstimmen, konnten wir sicher sein, mit der letzteren sehr viel einfacheren Methodik, die das gesamte im Plasma zirkulierende Kupfer zu erfassen. Herrn Kollegen...